Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 162: 107073, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37290392

RESUMO

BACKGROUND: Respiratory signal detection is critical for 4-dimensional (4D) imaging. This study proposes and evaluates a novel phase sorting method using optical surface imaging (OSI), aiming to improve the precision of radiotherapy. METHOD: Based on 4D Extended Cardiac-Torso (XCAT) digital phantom, OSI in point cloud format was generated from the body segmentation, and image projections were simulated using the geometries of Varian 4D kV cone-beam-CT (CBCT). Respiratory signals were extracted respectively from the segmented diaphragm image (reference method) and OSI respectively, where Gaussian Mixture Model and Principal Component Analysis (PCA) were used for image registration and dimension reduction respectively. Breathing frequencies were compared using Fast-Fourier-Transform. Consistency of 4DCBCT images reconstructed using Maximum Likelihood Expectation Maximization algorithm was also evaluated quantitatively, where high consistency can be suggested by lower Root-Mean-Square-Error (RMSE), Structural-Similarity-Index (SSIM) value closer to 1, and larger Peak-Signal-To-Noise-Ratio (PSNR) respectively. RESULTS: High consistency of breathing frequencies was observed between the diaphragm-based (0.232 Hz) and OSI-based (0.251 Hz) signals, with a slight discrepancy of 0.019Hz. Using end of expiration (EOE) and end of inspiration (EOI) phases as examples, the mean±1SD values of the 80 transverse, 100 coronal and 120 sagittal planes were 0.967, 0,972, 0.974 (SSIM); 1.657 ± 0.368, 1.464 ± 0.104, 1.479 ± 0.297 (RMSE); and 40.501 ± 1.737, 41.532 ± 1.464, 41.553 ± 1.910 (PSNR) for the EOE; and 0.969, 0.973, 0.973 (SSIM); 1.686 ± 0.278, 1.422 ± 0.089, 1.489 ± 0.238 (RMSE); and 40.535 ± 1.539, 41.605 ± 0.534, 41.401 ± 1.496 (PSNR) for EOI respectively. CONCLUSIONS: This work proposed and evaluated a novel respiratory phase sorting approach for 4D imaging using optical surface signals, which can potentially be applied to precision radiotherapy. Its potential advantages were non-ionizing, non-invasive, non-contact, and more compatible with various anatomic regions and treatment/imaging systems.


Assuntos
Tomografia Computadorizada Quadridimensional , Respiração , Simulação por Computador , Tomografia Computadorizada Quadridimensional/métodos , Imagens de Fantasmas , Razão Sinal-Ruído , Tomografia Computadorizada de Feixe Cônico/métodos
2.
Phys Med Biol ; 68(10)2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-36996837

RESUMO

Objective. Adaptive radiotherapy workflows require images with the quality of computed tomography (CT) for re-calculation and re-optimisation of radiation doses. In this work we aim to improve the quality of on-board cone beam CT (CBCT) images for dose calculation using deep learning.Approach. We propose a novel framework for CBCT-to-CT synthesis using cycle-consistent Generative Adversarial Networks (cycleGANs). The framework was tailored for paediatric abdominal patients, a challenging application due to the inter-fractional variability in bowel filling and small patient numbers. We introduced to the networks the concept of global residuals only learning and modified the cycleGAN loss function to explicitly promote structural consistency between source and synthetic images. Finally, to compensate for the anatomical variability and address the difficulties in collecting large datasets in the paediatric population, we applied a smart 2D slice selection based on the common field-of-view (abdomen) to our imaging dataset. This acted as a weakly paired data approach that allowed us to take advantage of scans from patients treated for a variety of malignancies (thoracic-abdominal-pelvic) for training purposes. We first optimised the proposed framework and benchmarked its performance on a development dataset. Later, a comprehensive quantitative evaluation was performed on an unseen dataset, which included calculating global image similarity metrics, segmentation-based measures and proton therapy-specific metrics.Main results. We found improved performance for our proposed method, compared to a baseline cycleGAN implementation, on image-similarity metrics such as Mean Absolute Error calculated for a matched virtual CT (55.0 ± 16.6 HU proposed versus 58.9 ± 16.8 HU baseline). There was also a higher level of structural agreement for gastrointestinal gas between source and synthetic images measured using the dice similarity coefficient (0.872 ± 0.053 proposed versus 0.846 ± 0.052 baseline). Differences found in water-equivalent thickness metrics were also smaller for our method (3.3 ± 2.4% proposed versus 3.7 ± 2.8% baseline).Significance. Our findings indicate that our innovations to the cycleGAN framework improved the quality and structure consistency of the synthetic CTs generated.


Assuntos
Aprendizado Profundo , Humanos , Criança , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X , Tomografia Computadorizada de Feixe Cônico/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Abdome
3.
Cancers (Basel) ; 14(5)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35267649

RESUMO

Radiation-induced lung damage (RILD) is a common side effect of radiotherapy (RT). The ability to automatically segment, classify, and quantify different types of lung parenchymal change is essential to uncover underlying patterns of RILD and their evolution over time. A RILD dedicated tissue classification system was developed to describe lung parenchymal tissue changes on a voxel-wise level. The classification system was automated for segmentation of five lung tissue classes on computed tomography (CT) scans that described incrementally increasing tissue density, ranging from normal lung (Class 1) to consolidation (Class 5). For ground truth data generation, we employed a two-stage data annotation approach, akin to active learning. Manual segmentation was used to train a stage one auto-segmentation method. These results were manually refined and used to train the stage two auto-segmentation algorithm. The stage two auto-segmentation algorithm was an ensemble of six 2D Unets using different loss functions and numbers of input channels. The development dataset used in this study consisted of 40 cases, each with a pre-radiotherapy, 3-, 6-, 12-, and 24-month follow-up CT scans (n = 200 CT scans). The method was assessed on a hold-out test dataset of 6 cases (n = 30 CT scans). The global Dice score coefficients (DSC) achieved for each tissue class were: Class (1) 99% and 98%, Class (2) 71% and 44%, Class (3) 56% and 26%, Class (4) 79% and 47%, and Class (5) 96% and 92%, for development and test subsets, respectively. The lowest values for the test subsets were caused by imaging artefacts or reflected subgroups that occurred infrequently and with smaller overall parenchymal volumes. We performed qualitative evaluation on the test dataset presenting manual and auto-segmentation to a blinded independent radiologist to rate them as 'acceptable', 'minor disagreement' or 'major disagreement'. The auto-segmentation ratings were similar to the manual segmentation, both having approximately 90% of cases rated as acceptable. The proposed framework for auto-segmentation of different lung tissue classes produces acceptable results in the majority of cases and has the potential to facilitate future large studies of RILD.

4.
Cancers (Basel) ; 14(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35205693

RESUMO

We present a novel classification system of the parenchymal features of radiation-induced lung damage (RILD). We developed a deep learning network to automate the delineation of five classes of parenchymal textures. We quantify the volumetric change in classes after radiotherapy in order to allow detailed, quantitative descriptions of the evolution of lung parenchyma up to 24 months after RT, and correlate these with radiotherapy dose and respiratory outcomes. Diagnostic CTs were available pre-RT, and at 3, 6, 12 and 24 months post-RT, for 46 subjects enrolled in a clinical trial of chemoradiotherapy for non-small cell lung cancer. All 230 CT scans were segmented using our network. The five parenchymal classes showed distinct temporal patterns. Moderate correlation was seen between change in tissue class volume and clinical and dosimetric parameters, e.g., the Pearson correlation coefficient was ≤0.49 between V30 and change in Class 2, and was 0.39 between change in Class 1 and decline in FVC. The effect of the local dose on tissue class revealed a strong dose-dependent relationship. Respiratory function measured by spirometry and MRC dyspnoea scores after radiotherapy correlated with the measured radiological RILD. We demonstrate the potential of using our approach to analyse and understand the morphological and functional evolution of RILD in greater detail than previously possible.

5.
Radiother Oncol ; 148: 89-96, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32344262

RESUMO

BACKGROUND AND PURPOSE: Radiation-induced lung damage (RILD) is a common consequence of lung cancer radiotherapy (RT) with unclear evolution over time. We quantify radiological RILD longitudinally and correlate it with dosimetry and respiratory morbidity. MATERIALS AND METHODS: CTs were available pre-RT and at 3, 6, 12 and 24-months post-RT for forty-five subjects enrolled in a phase 1/2 clinical trial of isotoxic, dose-escalated chemoradiotherapy for locally advanced non-small cell lung cancer. Fifteen CT-based measures of parenchymal, pleural and lung volume change, and anatomical distortions, were calculated. Respiratory morbidity was assessed with the Medical Research Council (MRC) dyspnoea score and spirometric pulmonary function tests (PFTs): FVC, FEV1, FEV1/FVC and DLCO. RESULTS: FEV1, FEV1/FVC and MRC scores progressively declined post-RT; FVC decreased by 6-months before partially recovering. Radiologically, an early phase (3-6 months) of acute inflammation was characterised by reversible parenchymal change and non-progressive anatomical distortion. A phase of chronic scarring followed (6-24 months) with irreversible parenchymal change, progressive volume loss and anatomical distortion. Post-RT increase in contralateral lung volume was common. Normal lung volume shrinkage correlated longitudinally with mean lung dose (r = 0.30-0.40, p = 0.01-0.04). Radiological findings allowed separation of patients with predominant acute versus chronic RILD; subjects with predominantly chronic RILD had poorer pre-RT lung function. CONCLUSIONS: CT-based measures enable detailed quantification of the longitudinal evolution of RILD. The majority of patients developed progressive lung damage, even when the early phase was absent or mild. Pre-RT lung function and RT dosimetry may allow to identify subjects at increased risk of RILD.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Pulmão/diagnóstico por imagem , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Testes de Função Respiratória , Tomografia Computadorizada por Raios X
6.
Comput Med Imaging Graph ; 74: 49-60, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31009928

RESUMO

Patch-based approaches have received substantial attention over the recent years in medical imaging. One of their potential applications may be to provide more anatomically consistent ventilation maps estimated on dynamic lung CT. An assessment of regional lung function may act as a guide for radiotherapy, ensuring a more accurate treatment plan. This in turn, could spare well-functioning parts of the lungs. We present a novel method for lung ventilation estimation from dynamic lung CT imaging, combining a supervoxel-based image representation with deformations estimated during deformable image registration, performed between peak breathing phases. For this we propose a method that tracks changes of the intensity of previously extracted supervoxels. For the evaluation of the method we calculate correlation of the estimated ventilation maps with static ventilation images acquired from hyperpolarized Xenon129 MRI. We also investigate the influence of different image registration methods used to estimate deformations between the peak breathing phases in the dynamic CT imaging. We show that our method performs favorably to other ventilation estimation methods commonly used in the field, independently of the image registration method applied to dynamic CT. Due to the patch-based approach of our method, it may be physiologically more consistent with lung anatomy than previous methods relying on voxel-wise relationships. In our method the ventilation is estimated for supervoxels, which tend to group spatially close voxels with similar intensity values. The proposed method was evaluated on a dataset consisting of three lung cancer patients undergoing radiotherapy treatment, and this resulted in a correlation of 0.485 with XeMRI ventilation images, compared with 0.393 for the intensity-based approach, 0.231 for the Jacobian-based method and 0.386 for the Hounsfield units averaging method, on average. Within the limitation of the small number of cases analyzed, results suggest that the presented technique may be advantageous for CT-based ventilation estimation. The results showing higher values of correlation of the proposed method demonstrate the potential of our method to more accurately mimic the lung physiology.


Assuntos
Apresentação de Dados , Pulmão/diagnóstico por imagem , Pulmão/fisiologia , Respiração , Algoritmos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Imageamento por Ressonância Magnética
7.
J Electron Imaging ; 26(6)2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-29225433

RESUMO

In this work we propose to combine a supervoxel-based image representation with the concept of graph cuts as an efficient optimization technique for 3D deformable image registration. Due to the pixels/voxels-wise graph construction, the use of graph cuts in this context has been mainly limited to 2D applications. However, our work overcomes some of the previous limitations by posing the problem on a graph created by adjacent supervoxels, where the number of nodes in the graph is reduced from the number of voxels to the number of supervoxels. We demonstrate how a supervoxel image representation, combined with graph cuts-based optimization can be applied to 3D data. We further show that the application of a relaxed graph representation of the image, followed by guided image filtering over the estimated deformation field, allows us to model 'sliding motion'. Applying this method to lung image registration, results in highly accurate image registration and anatomically plausible estimations of the deformations. Evaluation of our method on a publicly available Computed Tomography lung image dataset (www.dir-lab.com) leads to the observation that our new approach compares very favorably with state-of-the-art in continuous and discrete image registration methods achieving Target Registration Error of 1.16mm on average per landmark.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...